Semirings#
Semiring#
- class supar.structs.semiring.Semiring[source]#
Base semiring class Goodman (1999).
A semiring is defined by a tuple \(<K, \oplus, \otimes, \mathbf{0}, \mathbf{1}>\). \(K\) is a set of values; \(\oplus\) is commutative, associative and has an identity element 0; \(\otimes\) is associative, has an identity element 1 and distributes over +.
LogSemiring#
MaxSemiring#
KMaxSemiring#
ExpectationSemiring#
- class supar.structs.semiring.ExpectationSemiring[source]#
Expectation semiring \(<\oplus, +, [0, 0], [1, 0]>\) Li & Eisner (2009).
Practical Applications: \(H(p) = \log Z - \frac{1}{Z}\sum_{d \in D} p(d) r(d)\).
EntropySemiring#
- class supar.structs.semiring.EntropySemiring[source]#
Entropy expectation semiring \(<\oplus, +, [-\infty, 0], [0, 0]>\), where \(\oplus\) computes the log-values and the running distributional entropy \(H[p]\) Li & Eisner 2009,Hwa 2000,Kim et al. (2019).
CrossEntropySemiring#
- class supar.structs.semiring.CrossEntropySemiring[source]#
Cross Entropy expectation semiring \(<\oplus, +, [-\infty, -\infty, 0], [0, 0, 0]>\), where \(\oplus\) computes the log-values and the running distributional cross entropy \(H[p,q]\) of the two distributions Li & Eisner (2009).
KLDivergenceSemiring#
- class supar.structs.semiring.KLDivergenceSemiring[source]#
KL divergence expectation semiring \(<\oplus, +, [-\infty, -\infty, 0], [0, 0, 0]>\), where \(\oplus\) computes the log-values and the running distributional KL divergence \(KL[p \parallel q]\) of the two distributions Li & Eisner (2009).
SampledSemiring#
SparsemaxSemiring#
- class supar.structs.semiring.SparsemaxSemiring[source]#
Sparsemax semiring \(<\mathrm{sparsemax}, +, -\infty, 0>\) Martins & Astudillo 2016,Mensch & Blondel 2018,Correia et al. (2020).