Source code for supar.models.sdp.biaffine.model

# -*- coding: utf-8 -*-

import torch.nn as nn
from supar.config import Config
from supar.model import Model
from supar.modules import MLP, Biaffine


[docs]class BiaffineSemanticDependencyModel(Model): r""" The implementation of Biaffine Semantic Dependency Parser :cite:`dozat-manning-2018-simpler`. Args: n_words (int): The size of the word vocabulary. n_labels (int): The number of labels in the treebank. n_tags (int): The number of POS tags, required if POS tag embeddings are used. Default: ``None``. n_chars (int): The number of characters, required if character-level representations are used. Default: ``None``. n_lemmas (int): The number of lemmas, required if lemma embeddings are used. Default: ``None``. encoder (str): Encoder to use. ``'lstm'``: BiLSTM encoder. ``'bert'``: BERT-like pretrained language model (for finetuning), e.g., ``'bert-base-cased'``. Default: ``'lstm'``. feat (List[str]): Additional features to use, required if ``encoder='lstm'``. ``'tag'``: POS tag embeddings. ``'char'``: Character-level representations extracted by CharLSTM. ``'lemma'``: Lemma embeddings. ``'bert'``: BERT representations, other pretrained language models like RoBERTa are also feasible. Default: [ ``'tag'``, ``'char'``, ``'lemma'``]. n_embed (int): The size of word embeddings. Default: 100. n_pretrained (int): The size of pretrained word representations. Default: 125. n_feat_embed (int): The size of feature representations. Default: 100. n_char_embed (int): The size of character embeddings serving as inputs of CharLSTM, required if using CharLSTM. Default: 50. n_char_hidden (int): The size of hidden states of CharLSTM, required if using CharLSTM. Default: 100. char_pad_index (int): The index of the padding token in the character vocabulary, required if using CharLSTM. Default: 0. elmo (str): Name of the pretrained ELMo registered in `ELMoEmbedding.OPTION`. Default: ``'original_5b'``. elmo_bos_eos (Tuple[bool]): A tuple of two boolean values indicating whether to keep start/end boundaries of elmo outputs. Default: ``(True, False)``. bert (str): Specifies which kind of language model to use, e.g., ``'bert-base-cased'``. This is required if ``encoder='bert'`` or using BERT features. The full list can be found in `transformers`_. Default: ``None``. n_bert_layers (int): Specifies how many last layers to use, required if ``encoder='bert'`` or using BERT features. The final outputs would be weighted sum of the hidden states of these layers. Default: 4. mix_dropout (float): The dropout ratio of BERT layers, required if ``encoder='bert'`` or using BERT features. Default: .0. bert_pooling (str): Pooling way to get token embeddings. ``first``: take the first subtoken. ``last``: take the last subtoken. ``mean``: take a mean over all. Default: ``mean``. bert_pad_index (int): The index of the padding token in BERT vocabulary, required if ``encoder='bert'`` or using BERT features. Default: 0. finetune (bool): If ``False``, freezes all parameters, required if using pretrained layers. Default: ``False``. n_plm_embed (int): The size of PLM embeddings. If 0, uses the size of the pretrained embedding model. Default: 0. embed_dropout (float): The dropout ratio of input embeddings. Default: .2. n_encoder_hidden (int): The size of encoder hidden states. Default: 1200. n_encoder_layers (int): The number of encoder layers. Default: 3. encoder_dropout (float): The dropout ratio of encoder layer. Default: .33. n_edge_mlp (int): Edge MLP size. Default: 600. n_label_mlp (int): Label MLP size. Default: 600. edge_mlp_dropout (float): The dropout ratio of edge MLP layers. Default: .25. label_mlp_dropout (float): The dropout ratio of label MLP layers. Default: .33. interpolation (int): Constant to even out the label/edge loss. Default: .1. pad_index (int): The index of the padding token in the word vocabulary. Default: 0. unk_index (int): The index of the unknown token in the word vocabulary. Default: 1. .. _transformers: https://github.com/huggingface/transformers """ def __init__(self, n_words, n_labels, n_tags=None, n_chars=None, n_lemmas=None, encoder='lstm', feat=['tag', 'char', 'lemma'], n_embed=100, n_pretrained=125, n_feat_embed=100, n_char_embed=50, n_char_hidden=400, char_pad_index=0, char_dropout=0.33, elmo='original_5b', elmo_bos_eos=(True, False), bert=None, n_bert_layers=4, mix_dropout=.0, bert_pooling='mean', bert_pad_index=0, finetune=False, n_plm_embed=0, embed_dropout=.2, n_encoder_hidden=1200, n_encoder_layers=3, encoder_dropout=.33, n_edge_mlp=600, n_label_mlp=600, edge_mlp_dropout=.25, label_mlp_dropout=.33, interpolation=0.1, pad_index=0, unk_index=1, **kwargs): super().__init__(**Config().update(locals())) self.edge_mlp_d = MLP(n_in=self.args.n_encoder_hidden, n_out=n_edge_mlp, dropout=edge_mlp_dropout, activation=False) self.edge_mlp_h = MLP(n_in=self.args.n_encoder_hidden, n_out=n_edge_mlp, dropout=edge_mlp_dropout, activation=False) self.label_mlp_d = MLP(n_in=self.args.n_encoder_hidden, n_out=n_label_mlp, dropout=label_mlp_dropout, activation=False) self.label_mlp_h = MLP(n_in=self.args.n_encoder_hidden, n_out=n_label_mlp, dropout=label_mlp_dropout, activation=False) self.edge_attn = Biaffine(n_in=n_edge_mlp, n_out=2, bias_x=True, bias_y=True) self.label_attn = Biaffine(n_in=n_label_mlp, n_out=n_labels, bias_x=True, bias_y=True) self.criterion = nn.CrossEntropyLoss() def load_pretrained(self, embed=None): if embed is not None: self.pretrained = nn.Embedding.from_pretrained(embed) if embed.shape[1] != self.args.n_pretrained: self.embed_proj = nn.Linear(embed.shape[1], self.args.n_pretrained) return self
[docs] def forward(self, words, feats=None): r""" Args: words (~torch.LongTensor): ``[batch_size, seq_len]``. Word indices. feats (List[~torch.LongTensor]): A list of feat indices. The size is either ``[batch_size, seq_len, fix_len]`` if ``feat`` is ``'char'`` or ``'bert'``, or ``[batch_size, seq_len]`` otherwise. Default: ``None``. Returns: ~torch.Tensor, ~torch.Tensor: The first tensor of shape ``[batch_size, seq_len, seq_len, 2]`` holds scores of all possible edges. The second of shape ``[batch_size, seq_len, seq_len, n_labels]`` holds scores of all possible labels on each edge. """ x = self.encode(words, feats) edge_d = self.edge_mlp_d(x) edge_h = self.edge_mlp_h(x) label_d = self.label_mlp_d(x) label_h = self.label_mlp_h(x) # [batch_size, seq_len, seq_len, 2] s_edge = self.edge_attn(edge_d, edge_h).permute(0, 2, 3, 1) # [batch_size, seq_len, seq_len, n_labels] s_label = self.label_attn(label_d, label_h).permute(0, 2, 3, 1) return s_edge, s_label
[docs] def loss(self, s_edge, s_label, labels, mask): r""" Args: s_edge (~torch.Tensor): ``[batch_size, seq_len, seq_len, 2]``. Scores of all possible edges. s_label (~torch.Tensor): ``[batch_size, seq_len, seq_len, n_labels]``. Scores of all possible labels on each edge. labels (~torch.LongTensor): ``[batch_size, seq_len, seq_len]``. The tensor of gold-standard labels. mask (~torch.BoolTensor): ``[batch_size, seq_len]``. The mask for covering the unpadded tokens. Returns: ~torch.Tensor: The training loss. """ edge_mask = labels.ge(0) & mask edge_loss = self.criterion(s_edge[mask], edge_mask[mask].long()) label_loss = self.criterion(s_label[edge_mask], labels[edge_mask]) return self.args.interpolation * label_loss + (1 - self.args.interpolation) * edge_loss
[docs] def decode(self, s_edge, s_label): r""" Args: s_edge (~torch.Tensor): ``[batch_size, seq_len, seq_len, 2]``. Scores of all possible edges. s_label (~torch.Tensor): ``[batch_size, seq_len, seq_len, n_labels]``. Scores of all possible labels on each edge. Returns: ~torch.LongTensor: Predicted labels of shape ``[batch_size, seq_len, seq_len]``. """ return s_label.argmax(-1).masked_fill_(s_edge.argmax(-1).lt(1), -1)