Source code for supar.models.sdp.biaffine.parser

# -*- coding: utf-8 -*-

import os
from typing import Iterable, Union

import torch
from supar.config import Config
from supar.models.dep.biaffine.transform import CoNLL
from supar.models.sdp.biaffine import BiaffineSemanticDependencyModel
from supar.parser import Parser
from supar.utils import Dataset, Embedding
from supar.utils.common import BOS, PAD, UNK
from supar.utils.field import ChartField, Field, RawField, SubwordField
from supar.utils.logging import get_logger
from supar.utils.metric import ChartMetric
from supar.utils.tokenizer import TransformerTokenizer
from supar.utils.transform import Batch

logger = get_logger(__name__)


[docs]class BiaffineSemanticDependencyParser(Parser): r""" The implementation of Biaffine Semantic Dependency Parser :cite:`dozat-manning-2018-simpler`. """ NAME = 'biaffine-semantic-dependency' MODEL = BiaffineSemanticDependencyModel def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.LEMMA = self.transform.LEMMA self.TAG = self.transform.POS self.LABEL = self.transform.PHEAD
[docs] def train( self, train: Union[str, Iterable], dev: Union[str, Iterable], test: Union[str, Iterable], epochs: int = 1000, patience: int = 100, batch_size: int = 5000, update_steps: int = 1, buckets: int = 32, workers: int = 0, amp: bool = False, cache: bool = False, verbose: bool = True, **kwargs ): return super().train(**Config().update(locals()))
[docs] def evaluate( self, data: Union[str, Iterable], batch_size: int = 5000, buckets: int = 8, workers: int = 0, amp: bool = False, cache: bool = False, verbose: bool = True, **kwargs ): return super().evaluate(**Config().update(locals()))
[docs] def predict( self, data: Union[str, Iterable], pred: str = None, lang: str = None, prob: bool = False, batch_size: int = 5000, buckets: int = 8, workers: int = 0, amp: bool = False, cache: bool = False, verbose: bool = True, **kwargs ): return super().predict(**Config().update(locals()))
def train_step(self, batch: Batch) -> torch.Tensor: words, *feats, labels = batch mask = batch.mask mask = mask.unsqueeze(1) & mask.unsqueeze(2) mask[:, 0] = 0 s_edge, s_label = self.model(words, feats) loss = self.model.loss(s_edge, s_label, labels, mask) return loss @torch.no_grad() def eval_step(self, batch: Batch) -> ChartMetric: words, *feats, labels = batch mask = batch.mask mask = mask.unsqueeze(1) & mask.unsqueeze(2) mask[:, 0] = 0 s_edge, s_label = self.model(words, feats) loss = self.model.loss(s_edge, s_label, labels, mask) label_preds = self.model.decode(s_edge, s_label) return ChartMetric(loss, label_preds.masked_fill(~mask, -1), labels.masked_fill(~mask, -1)) @torch.no_grad() def pred_step(self, batch: Batch) -> Batch: words, *feats = batch mask, lens = batch.mask, (batch.lens - 1).tolist() mask = mask.unsqueeze(1) & mask.unsqueeze(2) mask[:, 0] = 0 with torch.autocast(self.device, enabled=self.args.amp): s_edge, s_label = self.model(words, feats) label_preds = self.model.decode(s_edge, s_label).masked_fill(~mask, -1) batch.labels = [CoNLL.build_relations([[self.LABEL.vocab[i] if i >= 0 else None for i in row] for row in chart[1:i, :i].tolist()]) for i, chart in zip(lens, label_preds)] if self.args.prob: batch.probs = [prob[1:i, :i].cpu() for i, prob in zip(lens, s_edge.softmax(-1).unbind())] return batch
[docs] @classmethod def build(cls, path, min_freq=7, fix_len=20, **kwargs): r""" Build a brand-new Parser, including initialization of all data fields and model parameters. Args: path (str): The path of the model to be saved. min_freq (str): The minimum frequency needed to include a token in the vocabulary. Default:7. fix_len (int): The max length of all subword pieces. The excess part of each piece will be truncated. Required if using CharLSTM/BERT. Default: 20. kwargs (Dict): A dict holding the unconsumed arguments. """ args = Config(**locals()) os.makedirs(os.path.dirname(path) or './', exist_ok=True) if os.path.exists(path) and not args.build: parser = cls.load(**args) parser.model = cls.MODEL(**parser.args) parser.model.load_pretrained(parser.transform.FORM[0].embed).to(parser.device) return parser logger.info("Building the fields") WORD = Field('words', pad=PAD, unk=UNK, bos=BOS, lower=True) TAG, CHAR, LEMMA, ELMO, BERT = None, None, None, None, None if args.encoder == 'bert': t = TransformerTokenizer(args.bert) WORD = SubwordField('words', pad=t.pad, unk=t.unk, bos=t.bos, fix_len=args.fix_len, tokenize=t) WORD.vocab = t.vocab else: WORD = Field('words', pad=PAD, unk=UNK, bos=BOS, lower=True) if 'tag' in args.feat: TAG = Field('tags', bos=BOS) if 'char' in args.feat: CHAR = SubwordField('chars', pad=PAD, unk=UNK, bos=BOS, fix_len=args.fix_len) if 'lemma' in args.feat: LEMMA = Field('lemmas', pad=PAD, unk=UNK, bos=BOS, lower=True) if 'elmo' in args.feat: from allennlp.modules.elmo import batch_to_ids ELMO = RawField('elmo') ELMO.compose = lambda x: batch_to_ids(x).to(WORD.device) if 'bert' in args.feat: t = TransformerTokenizer(args.bert) BERT = SubwordField('bert', pad=t.pad, unk=t.unk, bos=t.bos, fix_len=args.fix_len, tokenize=t) BERT.vocab = t.vocab LABEL = ChartField('labels', fn=CoNLL.get_labels) transform = CoNLL(FORM=(WORD, CHAR, ELMO, BERT), LEMMA=LEMMA, POS=TAG, PHEAD=LABEL) train = Dataset(transform, args.train, **args) if args.encoder != 'bert': WORD.build(train, args.min_freq, (Embedding.load(args.embed) if args.embed else None), lambda x: x / torch.std(x)) if TAG is not None: TAG.build(train) if CHAR is not None: CHAR.build(train) if LEMMA is not None: LEMMA.build(train) LABEL.build(train) args.update({ 'n_words': len(WORD.vocab) if args.encoder == 'bert' else WORD.vocab.n_init, 'n_labels': len(LABEL.vocab), 'n_tags': len(TAG.vocab) if TAG is not None else None, 'n_chars': len(CHAR.vocab) if CHAR is not None else None, 'char_pad_index': CHAR.pad_index if CHAR is not None else None, 'n_lemmas': len(LEMMA.vocab) if LEMMA is not None else None, 'bert_pad_index': BERT.pad_index if BERT is not None else None, 'pad_index': WORD.pad_index, 'unk_index': WORD.unk_index, 'bos_index': WORD.bos_index }) logger.info(f"{transform}") logger.info("Building the model") model = cls.MODEL(**args).load_pretrained(WORD.embed if hasattr(WORD, 'embed') else None) logger.info(f"{model}\n") parser = cls(args, model, transform) parser.model.to(parser.device) return parser